
MacOS Instrumentation
Programmer’s Guide

Copyright © 1996-1997, Apple Computer, Inc.

Table of Contents

Introduction 2

About the Instrumentation System 2
Instrumentation Classes 3
The Instrumentation Tree 3
Trace Event Records 4
Types of Statistics 4

Using the Instrumentation System 6
Creating Instrumentation Classes 6
Logging Trace Information 7
Logging to a Summary Trace Class 9
Recording Statistics Information 9
Enabling and Disabling Instrumentation Classes 10

Instrumentation Reference 11
Constants 11
Instrumentation Routines 12

Initialization and Termination 12
Creating and Destroying Instrumentation Classes 13
Creating and Destroying Data Descriptors 19
Logging Trace Events 21
Updating Statistics Classes 24
Enabling and Disabling Instrumentation Classes 27

Summary of the Instrumentation System 28
Constants 28
Instrumentation Routines 28

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 1

Introduction

The instrumentation system provides services that allow you to record information about
running software. This can be used to expose system behavior, and is particularly useful
for investigating runtime performance.

This guide describes the instrumentation services, how they are organized, and how they
may be used to record instrumentation information from within your programs.

It is intended for anyone who wants to be able to produce runtime information from within
their code, and later analyze that information in order to understand how the code is
operating.

In order to use the instrumentation system, you should be generally familiar with building

and running Macintosh programs. You should also be familiar with the printf()

formatted output mechanism, described in Appendix B of The C Programming Language,
Second Edition, by Kernighan & Ritchie.

This guide begins by describing instrumentation points in general and the various types in
particular. It then discusses how to create these points and write instrumentation data to
them. Finally, it documents the programming interface to the instrumentation system.

About the Instrumentation System

This section describes the types of instrumentation provided, instrumentation classes, the
Instrumentation Tree, and the various forms that instrumentation data can take.

Generally speaking, there are two types of instrumentation data that you can record: trace
events, and statistics. Trace events, also called traces, are used to indicate that a particular
event occurred at a particular time. Every time your software logs a trace event, a trace
event record is created and will be written out to permanent storage.

Traces are typically used to track the program flow of control – such as function entry and
exit – and to determine the breakdown of execution time among various components.

Statistics represent the various values or totals that your software can measure over time.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 2

Statistics require much less overhead than traces, because rather than having to record
every call, the instrumentation system must only keep track of the current values for each
statistic. These values are periodically sampled and written to permanent storage.

The trade-off is that there is no record of when a particular statistic value was set by your
software; its timestamp refers to when it was sampled by the instrumentation system.

Your code may produce both types of instrumentation data – and call most instrumentation
routines – at any interrupt level. Exceptions are noted in the “Instrumentation Reference”
section.

Instrumentation Classes

In order to record traces for a particular event or to define a particular statistic, you must
create an instrumentation class. An instrumentation class is a uniquely-named container for
instrumentation data. When you create an instrumentation class, you define its name and its
type. You may also provide type-specific information, such as the range and resolution of a
histogram statistic.

You use the instrumentation class reference that is returned from the creation call to specify
the destination of the instrumentation data that you wish to record. An instrumentation class
is either enabled or disabled; when it is disabled, none of its information is collected or
written to permanent storage.

The Instrumentation Tree

Instrumentation classes are organized in a tree structure. Every instrumentation class has a
parent node in the Instrumentation Tree; the root node of the tree is specified by the

constant kInstRootClassRef. Trace and statistics classes must be leaf nodes; only a

special type of instrumentation node, the Path Instrumentation Class, can have children.

Because every instrumentation class is a member of the instrumentation tree, they are
sometimes referred to as instrumentation nodes.

Organizing your instrumentation classes into a tree allows you to avoid name conflicts
among different classes. By creating subtrees for each of your software components, any
component may use generic class names without interfering with the others.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 3

Trace Event Records

Every time you log a trace event, the instrumentation system records a trace event record.
This record includes the trace instrumentation class reference and a timestamp indicating
when the trace was logged.

A pair of trace events belonging to the same class may be marked as a “start event” and an
“end event.” This allows analysis software to recognize that they represent a single “event
range,” and to display them appropriately. These traces are normally logged at the
beginning and end of a single routine or interesting operation.

A trace event between a start event and an end event may be marked as a “middle event.”
Such an event record will be displayed by the analysis software as part of the event range; it
is useful for segmenting a procedure into several identifiable parts.

An event that includes a start, an end, and zero or more middle event records is called a
multi-part event.

Trace event records may also include user-defined data. This data is formatted into strings

using InstDataDescriptorRef’s, which are similar to printf() format descriptor

strings.

In the current implementation, trace event records are stored in a circular buffer in memory
and periodically transferred from the buffer to an instrumentation data file. It is possible to
fill the circular buffer by logging trace events faster than the system can transfer them out of
the buffer. If this happens, older trace records are lost as they are overwritten by newer
ones.

The current implementation includes a mechanism to increase the buffer size in order to
avoid this problem. See the Instrumentation System User’s Guide for details.

It is also possible to create a special type of trace instrumentation class, called a trace
summary class. Individual trace event records are not produced when a trace is logged to
such a class; instead the class just keeps track of how many traces were logged and how
much time was spent between its start and end traces.

Types of Statistics

A statistics instrumentation class is a container that holds a particular set of values; they are

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 4

updated over time by your software. The instrumentation system defines a variety of
different statistics; each one is best-suited to keeping track of a particular type of
information.

A Magnitude is simply a signed 32-bit number. As a magnitude class is updated with new
values, the instrumentation system keeps track of the maximum magnitude supplied, the
minimum, the current value, the cumulative total, and the number of times it was updated.

Magnitudes are often used to record simple varying values, such as the amount of free
memory at a given time.

A Growth value is an unsigned 64-bit counter that is updated with 32-bit incremental
values. Like a magnitude class, growth classes keep track of the current update increment,
the maximum increment encountered, the minimum increment, the current total, and the
number of times the class was updated.

However, since growth values can only increase, they are generally used for counting
events such as cache hits and misses. Analysis software may display the information inside
growth statistics as a rate, such as the number of cache hits per second.

A Histogram is specified by a range and a bucket width. The Histogram class maintains a
set of buckets of the specified width distributed evenly over the range. Each bucket holds
the number of values supplied to the histogram that fell inside that bucket’s range. The
class also maintains an overflow count, which holds the number of values that fell outside
the entire range.

Histograms are good for profiling things like parameter values, which tend to vary
unpredictably over a certain range. For instance, you could create a histogram of the block
size parameter of a memory allocation routine to profile allocation sizes.

The Split Histogram is a variant of the histogram; in it, the range is divided into two parts
with different bucket widths for each part. A Split Histogram can be used in place of a
regular histogram to cover one part of a range in greater – or lesser – detail.

The Tally statistic is similar to a histogram, in that it keeps track of a set of counts. It is
created with a fixed number of buckets, which are initially undefined. You update a tally
with a bucket identifier and an increment. If there is a bucket associated with that identifier,
its count is incremented accordingly. If not, and there are still buckets left undefined, one is
defined for the identifier and its initial count is set to the increment. If all buckets have been
defined, the overflow count is incremented instead.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 5

Tallies are often used to create profiles of operations whose profiled parameter does not
vary over a fixed range, or whose range is too large to make a histogram practical. For
instance, you could use a tally to count how many files of various types your application
was asked to open, using the file type as the bucket identifier.

Using the Instrumentation System

This section describes how to create, enable, and disable instrumentation classes, how to
log trace information, and how to record statistics information.

Creating Instrumentation Classes

The instrumentation system provides routines that allow you to create each type of

instrumentation class. For example, calling InstCreateHistogramClass will create a

Histogram statistic class.

Each creation routine returns a reference to the new instrumentation class. This reference is
used for subsequent operations involving that class.

The position of the class within the instrumentation tree is determined by the parent node
reference and the class name string that is supplied to the creation routine. The parent node

reference must be either kInstRootClassRef, or an instrumentation class created by a

previous call to InstCreatePathClass. The class name string may be a simple class

name, or a colon-delimited “partial pathname” relative to the parent node reference.

For example, the code in in figure 1-1 will create a growth instrumentation class called
“Page Faults” as a child of a parent node called “Totals,” which itself is a child of the root
of the tree.

Listing 1-1 Sample code: creating a class

OSStatus CreatePageFaultsStat(InstGrowthClassRef *pNewClassRef)

{

err = InstCreateGrowthClass(kInstRootClassRef,

"Totals:Page Faults", kInstEnableClassMask, pNewClassRef);

return err;

}

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 6

The class is created enabled, so it will be eligible to accept and record data immediately.

Specifying a partial path in the class name parameter of a creation routine will create
intervening path nodes if they do not already exist. For example, calling

InstCreateMagnitudeClass with the class name “Graphics:Testing:LineBlits” when the

instrumentation tree is empty will create three nodes: a magnitude node called “LineBlits,”
and two path nodes called “Graphics” and “Testing.”

Instrumentation class references are global to the system. If you attempt to create the same
instrumentation node twice, the original class reference is returned by the second creation
call, with no error. If you attempt to create a node of a different type with the same name as
an existing node, at the same position in the instrumentation tree, then an error will be
returned.

Once InstDisposeClass has been called on an instrumentation class, it is unusable by any

of its clients.

Logging Trace Information

In order to log trace information, you must create a trace instrumentation class to hold the

event records. The InstCreateTraceClass function will return a trace instrumentation

class reference.

Normally, traces are logged using the InstLogTraceEvent function.

InstLogTraceEvent(traceClassRef, kInstNoEventTag, kNilOptions);

This creates a simple trace event record belonging to the trace class represented by

traceClassRef, stamped with the current time.

You can create a multi-part event by calling InstLogTraceEvent more than once,

specifying kInstStartEvent, kInstMiddleEvent, or kInstEndEvent in the

InstEventOptions field. Each multi-part event must have one start event record and one

end event record.

The start, middle, and end events of a multi-part event must have the same InstEventTag;

this allows the instrumentation system to recognize them as being part of the same event.
The event tag that you choose should be locally unique among other traces of that class; for

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 7

example, a function which is called recursively that logs a start trace on entry and an end
trace at exit should ensure that it does not create several start events with the same event
tag.

Similar precautions should be taken when the creation of a start/end pair may be interrupted
by the same trace being logged at a higher interrupt level.

You can use the InstCreateEventTag function to generate event tags that are guaranteed

to be unique across the system.

If you are not creating multi-part events, you may use the InstEventTag parameter to

record an arbitrary 32-bit value in the trace event record.

In order to record user-defined data along with the standard trace event information, you
must create a DataDescriptor that defines how the data can be formatted into an ASCII

string. You create a DataDescriptor by calling InstCreateDataDescriptor; you can

create more than one by calling InstCreateDataDescriptors. The format strings you

specify follow the rules for the standard printf() format descriptor strings.

The InstLogTraceEventWithData function takes a reference to a DataDescriptor and an

arbitrary number of parameters containing the data. It creates a trace event record containing
a string representation of the the data.

Listing 1-2 Sample code: logging an event with data

InstCreateDataDescriptor("%d:%d:%d", &aDataDesc);

InstLogTraceEventWithData(traceClassRef, kInstNoEventTag, kNilOptions,

aDataDesc, hours, minutes, seconds);

The InstLogTraceEventWithDataStructure function does the same job as the

InstLogTraceEventWithData function; it is provided for development environments that

do not support functions with a variable number of arguments. Instead, it accepts a pointer
to a structure that contains the argument list.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 8

Listing 1-3 Sample code: calling InstLogTraceEventWithDataStructure

struct MyTime

{

UInt32 hours, minutes, seconds;

};

MyTime t = { 12, 0, 0 };

InstLogTraceEventWithDataStructure(traceClassRef, kInstNoEventTag,

kNilOptions, aDataDesc, (Byte*) &t, sizeof t);

Members of the structure must be four-byte aligned.

When you no longer need the DataDescriptor, you may release its storage by calling

InstDisposeDataDescriptor.

Logging to a Summary Trace Class

Under some circumstances, you may not wish to have an individual trace event record
produced every time you log a trace event. Usually this is because the event occurs very
frequently and generates a large amount of trace data.

As an alternative, you can set the kInstSummaryTraceClassMask option bit when you call

the InstCreateTraceClass function to create the trace instrumentation class. This will

produce a summary trace class. Trace events are logged to a summary trace class using the
same routines as with regular trace classes, but the results appear as a growth statistic.

The statistics data has the following interpretation: the number of times the class was
updated corresponds to the number of trace events that were logged. The total growth value
corresponds to the number of microseconds spent between each start and end event logged.
The the minimum and maximum increments correspond to the minimum and maximum
start/end microsecond durations.

Recording Statistics Information

In order to record statistics information, you must create a statistics instrumentation class of

the appropriate type to hold the data. The InstCreateGrowthClass,

InstCreateMagnitudeClass, InstCreateHistogramClass,

InstCreateSplitHistogramClass, and InstCreateTallyClass functions all return an

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 9

instrumentation class reference.

When a class is created its values are zero; tally classes are empty. You put data into a class

by calling the appropriate update function: InstUpdateGrowth for growth statistics,

InstUpdateMagnitudeAbsolute or InstUpdateMagnitudeDelta for magnitudes,

InstUpdateHistogram for histograms and split histograms, and InstUpdateTally for

tallies.

When a class is updated, it records the fact in its update count and modifies its data based
on the update.

Instrumentation classes are global to the system, so all updates to the same statistics class
reference will end up in the same container.

In the current implementation, individual statistic updates are not recorded; instead,
“snapshots” are taken of the current values of each enabled statistic at various times. See
the Instrumentation System User’s Guide for more details.

Enabling and Disabling Instrumentation Classes

An instrumentation class is either enabled or disabled. When a trace class is enabled,
logging a trace event to it will place a trace event record into the circular buffer, which will
get copied to permanent storage. When it is disabled, logging a trace has no effect.

When a statistics class is enabled, calling its update routine will increment the update count
and modify the current value based on the update. When the instrumentation system
samples statistics, the current value will be written to permanent storage. When a statistics
class is disabled, calling its update routine has no effect; disabled statistics are not sampled
by the instrumentation system.

You enable and disable instrumentation classes by calling the InstEnableClass and

InstDisableClass functions. Disabling a path instrumentation class – including

kInstRootClassRef – will disable the entire subtree; enabling it will re-enable those
members of the subtree that were previously enabled.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 10

Instrumentation Reference

Constants

This section describes the constants defined by the instrumentation interface. You use these
constants to specify the root of the instrumentation tree, instrumentation class options, and
trace event options.

When you are creating an instrumentation class, you must specify its parent node. Use the

constant kInstRootClassRef to specify the root of the instrumentation tree.

#define kInstRootClassRef ((InstClassRef) -1)

You may specify that an instrumentation classes is initially enabled or disabled. Pass

kInstEnableClassMask in the InstClassOptions parameter to enable it, or

kInstDisableClassMask to disable it.

When you create a trace instrumentation class, you may add

kInstSummaryTraceClassMask to the InstEventOptions parameter to create a trace

summary class.

enum { kInstDisableClassMask = 0x00,

kInstEnableClassMask = 0x01

kInstSummaryTraceClassMask = 0x20

};

When you log a trace event, you may specify that the event marks the beginning of a multi-

part event, a point in the middle, or the end. Pass kInstStartEvent, kInstMiddleEvent,

or kInstEndEvent in the InstEventOptions parameter of the routine you use to log trace

events .

enum { kInstStartEvent = 1,

kInstEndEvent = 2,

kInstMiddleEvent = 3

};

If you log a multi-part event, you must specify the same InstEventTag in the start, middle

and end events. This allows the analysis software to recognize them as a set.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 11

If you are not logging a multi-part event, you may specify kInstNoEventTag to indicate

that you are not using the InstEventTag.

enum { kInstNoEventTag = 0 };

Instrumentation Routines

This section describes the routines provided by the instrumentation system. You can use
these routines to initialize and terminate the 68K instrumentation library, create and destroy
instrumentation classes and data descriptors, provide data to instrumentation classes, and
enable or disable instrumentation classes.

Except where noted, each of these routines may be called from any interrupt level.

Initialization and Termination

You can use these routines to initialize and terminate the 68K instrumentation library.
PowerPC clients do not have to call initialization or termination routines; the operating
system initializes and terminates shared libraries when necessary.

InstInitialize68K

You call InstInitialize68K once from 68K code to initialize the statically-linked 68K

instrumentation library.

pascal OSStatus InstInitialize68K(void);

DESCRIPTION

The InstInitialize68K function opens a connection to the PowerPC instrumentation
implementation and sets up the Mixed Mode tables necessary to call it from a 68K
environment. It does not require external support from an A5- or A4-world.

SPECIAL CONSIDERATIONS

The InstInitialize68K function should not be called from interrupt time.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 12

InstTerminate68K

You can call InstTerminate68K to release storage allocated by calling

InstInitialize68K.

pascal OSStatus InstTerminate68K(void);

DESCRIPTION

The InstTerminate68K function closes the connection to the PowerPC instrumentation

implementation and deallocates any global storage.

SPECIAL CONSIDERATIONS

The InstTerminate68K function should not be called from interrupt time. You do not

have to call it at all if your process calls ExitToShell.

Creating and Destroying Instrumentation Classes

You can use these routines to create and destroy instrumentation classes.

InstCreatePathClass

You can call InstCreatePathClass to place a new path instrumentation class node into

the instrumentation tree.

pascal OSStatus InstCreatePathClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstPathClassRef *returnPathClass);

parentClass

The parent class node of the class to be created

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

returnPathClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreatePathClass function creates a new path instrumentation class node in the
instrumentation tree. Path classes are analogous to folders in a file system; you can use the

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 13

class reference that is returned as the parentClass in subsequent creation calls.

InstCreateTraceClass

You can call InstCreateTraceClass to place a new trace instrumentation class node into

the instrumentation tree.

pascal OSStatus InstCreateTraceClass(InstPathClassRef parentClass,

const char *className, OSType component, InstClassOptions options,

InstTraceClassRef *returnTraceClass);

parentClass The parent class node of the class to be created

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

component A four-character code used to identify the software component that produces

the trace events.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnTraceClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateTraceClass function creates a container for the trace event records that

are produced by calling InstLogTraceEvent, InstLogTraceEventWithData, or

InstLogTraceEventWithDataStructure. A trace event class is usually associated with a

particular client routine or operation.

Pass kInstSummaryTraceClassMask in the options parameter to create a summary trace

class.

The component code is put into all trace event records, but it is not currently used by the
instrumentation system.

InstCreateHistogramClass

You can call InstCreateHistogramClass to place a new histogram instrumentation class

node into the instrumentation tree.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 14

pascal OSStatus InstCreateHistogramClass(InstPathClassRef parentClass,

const char *className, SInt32 lowerBounds, SInt32 upperBounds,

UInt32 bucketWidth, InstClassOptions options,

InstHistogramClassRef *returnHistogramClass);

parentClass The parent class node of the class to be created

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

lowerBounds The lower limit of the histogram range.

upperBounds The upper limit of the histogram range.

bucketWidth The portion of the range that each bucket will cover.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnHistogramClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateHistogramClass function creates a container for the histogram data that

is produced by calling InstUpdateHistogram. The number of buckets the histogram will

maintain is determined implicitly by dividing the histogram range by the bucket width.

SPECIAL CONSIDERATIONS

In the current implementation, each histogram data point consists of one 32-bit value for
each bucket in the histogram; a data point is recorded every sample period. Thus, creating
histograms with many buckets will result in large instrumentation data files.

InstCreateSplitHistogramClass

You can call InstCreateSplitHistogramClass to place a new split histogram

instrumentation class node into the instrumentation tree.

pascal OSStatus InstCreateSplitHistogramClass(

InstPathClassRef parentClass, const char *className,

SInt32 histogram1LowerBounds, UInt32 histogram1BucketWidth,

SInt32 knee, SInt32 histogram2UpperBounds,

UInt32 histogram2BucketWidth, InstClassOptions options,

InstSplitHistogramClassRef *returnSplitHistogramClass);

parentClass The parent class node of the class to be created

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 15

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

histogram1LowerBounds

The lower limit of the histogram range.

histogram1BucketWidth

The portion of the first part of the histogram range that each bucket of the
first set will cover.

knee Where the first part of the histogram range ends and the second begins.

histogram2BucketWidth

The portion of the second part of the histogram range that each bucket of the
second set will cover.

histogram2UpperBounds

The upper limit of the histogram range.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnSplitHistogramClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateSplitHistogramClass function creates a container for the histogram data

that is produced by calling InstUpdateHistogram. The number of buckets the split

histogram will maintain is determined implicitly by dividing the first and second parts of the
histogram range by the first and second bucket widths, respectively.

SPECIAL CONSIDERATIONS

In the current implementation, each histogram data point consists of one 32-bit value for
each bucket in the histogram; a data point is recorded every sample period. Thus, creating
histograms with many buckets will result in large instrumentation data files.

InstCreateMagnitudeClass

You can call InstCreateMagnitudeClass to place a new magnitude instrumentation class

node into the instrumentation tree.

pascal OSStatus InstCreateMagnitudeClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstMagnitudeClassRef *returnMagnitudeClass);

parentClass The parent class node of the class to be created

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 16

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnMagnitudeClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateMagnitudeClass function creates a container for the magnitude data that

is produced by calling InstUpdateMagnitudeAbsolute or

InstUpdateMagnitudeDelta.

InstCreateGrowthClass

You can call InstCreateGrowthClass to place a new growth instrumentation class node

into the instrumentation tree.

pascal OSStatus InstCreateGrowthClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstGrowthClassRef *returnGrowthClass);

parentClass The parent class node of the class to be created

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnGrowthClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateGrowthClass function creates a container for the growth data that is

produced by calling InstUpdateGrowth.

InstCreateTallyClass

You can call InstCreateTallyClass to place a new tally instrumentation class node into

the instrumentation tree.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 17

pascal OSStatus InstCreateTallyClass(InstPathClassRef parentClass,

const char *className, UInt16 maxNumberOfValues,

InstClassOptions options, InstTallyClassRef *returnTallyClass);

parentClass The parent class node of the class to be created

className The zero-terminated name of the class to be created. It may be a colon-

delimited partial path, relative to parentClass.

maxNumberOfValues

The maximum number of buckets to create.

options Either kInstEnableClassMask or kInstDisableClassMask.

returnTallyClass

On exit, the instrumentation class reference of the new class.

DESCRIPTION

The InstCreateTallyClass function creates a container for the tally data that is produced

by calling InstUpdateTally. Initially, no buckets are created; buckets are allocated as

InstUpdateTally is called with new bucket identifiers.

SPECIAL CONSIDERATIONS

In the current implementation, each tally data point consists of two 32-bit values for each
bucket allocated by the tally; a data point is recorded every sample period. Thus, creating
tallies with many buckets will result in large instrumentation data files.

InstDisposeClass

You can call InstDisposeClass to prevent any more data from being added to an

instrumentation class.

pascal void InstDisposeClass(InstClassRef theClass);

theClass The instrumentation class you wish to dispose of.

DESCRIPTION

The InstDisposeClass function marks an instrumentation class as unusable; it can no

longer be enabled or disabled, and further operations on it will have no effect.

Calling InstDisposeClass on a path instrumentation class implicitly disposes of its

children.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 18

SPECIAL CONSIDERATIONS

Calling this function does not free any significant system resources. It is normally not
necessary to dispose of an instrumentation class once it is created.

Creating and Destroying Data Descriptors

This section describes how to create and destroy data descriptors, which are used to specify
how user-defined data is to be formatted in trace event records.

InstCreateDataDescriptor

You can call InstCreateDataDescriptor to create a DataDescriptor from a format string.

pascal OSStatus InstCreateDataDescriptor(const char *formatString,

InstDataDescriptorRef *returnDescriptor);

formatString

A zero-terminated printf() format string.

returnDescriptor

On exit, a reference to the new DataDescriptor.

DESCRIPTION

The InstCreateDataDescriptor function creates a DataDescriptor that you can use to

specify how a list of parameters is to be formatted by the InstLogTraceEventWithData

or InstLogTraceEventWithDataStructure functions. The format string should follow

the same rules as a printf() format string, with one descriptor for every parameter that

you wish to record.

SPECIAL CONSIDERATIONS

This function should not be called at interrupt time.

InstCreateDataDescriptors

You can call InstCreateDataDescriptors to create a set of DataDescriptor’s with a

single call.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 19

pascal OSStatus InstCreateDataDescriptors(const char **formatStrings,

UInt32 numberOfDescriptors,

InstDataDescriptorRef *returnDescriptorList);

formatStrings

An array of zero-terminated printf() format strings.

numberOfDescriptors

The number of strings in the formatStrings array.

returnDescriptorList

On exit, this points to an array of InstDataDescriptorRef’s.

DESCRIPTION

The InstCreateDataDescriptors function is a shortcut for creating a set of

InstDataDescriptorRef’s from an array of format strings. Each element of the

returnDescriptorList array corresponds to the same element of the formatStrings

array.

See the description of the InstCreateDataDescriptor function, above, for more details.

SPECIAL CONSIDERATIONS

This function should not be called at interrupt time.

InstDisposeDataDescriptor

You can call InstDisposeDataDescriptor to release the storage used by a

DataDescriptor.

pascal void InstDisposeDataDescriptor(

InstDataDescriptorRef theDescriptor);

theDescriptor

The reference to a DataDescriptor that you no longer need.

DESCRIPTION

The InstDisposeDataDescriptor function releases the storage used by a DataDescriptor.

You should not use the InstDataDescriptorRef after calling this function.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 20

SPECIAL CONSIDERATIONS

This function should not be called at interrupt time.

InstDisposeDataDescriptors

You can call InstDisposeDataDescriptors to release the storage used by an array of

DataDescriptor’s.

pascal void InstDisposeDataDescriptors(

InstDataDescriptorRef *theDescriptorList,

UInt32 numberOfDescriptors);

theDescriptorList

A pointer to an array of InstDataDescriptorRef’s.

numberOfDescriptors

The number of DataDescriptor’s in the array.

DESCRIPTION

The InstDisposeDataDescriptors function releases the storage used by the

DataDescriptor’s in theDescriptorList. You should not use any of these

InstDataDescriptorRef’s after calling this function.

SPECIAL CONSIDERATIONS

This function should not be called at interrupt time.

Logging Trace Events

This section describes the routines you use to log trace events.

InstLogTraceEvent

You can call InstLogTraceEvent to add a trace event record to a trace instrumentation

class.

pascal void InstLogTraceEvent(InstTraceClassRef theTraceClass,

InstEventTag eventTag, InstEventOptions options);

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 21

theTraceClass

The trace instrumentation class that you wish to log an event against.

eventTag A tag that is used to link multi-part trace events.

options A value used to specify that that this is a multi-part event.

DESCRIPTION

The InstLogTraceEvent function will time-stamp an event record for the specified trace

class, which will be recorded by the instrumentation system. The options parameter can be

used to indicate that the trace record is part of a multi-part event (kInstStartEvent,

kInstMiddleEvent, or kInstEndEvent). The eventTag parameter is used to link the

members of a multi-part event.

If you are not creating multi-part events, you can use the eventTag parameter to store an

arbitrary 32-bit value in the event record.

InstLogTraceEventWithData

You can call InstLogTraceEventWithData to add a trace event record that includes user-

defined data to a trace instrumentation class.

pascal void InstLogTraceEventWithData(InstTraceClassRef theTraceClass,

InstEventTag eventTag, InstEventOptions options,

InstDataDescriptorRef theDescriptor, ...);

theTraceClass

The trace instrumentation class that you wish to log an event against.

eventTag A tag that is used to link multi-part trace events.

options A value used to specify that that this is a multi-part event.

theDescriptor

A data descriptor that will be used to format the data into a string.

(...) An arbitrary number of parameters describing the data.

DESCRIPTION

The InstLogTraceEventWithData function works similarly to the InstLogTraceEvent

function, described above, but includes user-defined data in the trace event record.

SPECIAL CONSIDERATIONS

In the current implementation, InstLogTraceEventWithData is significantly more

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 22

expensive to call than InstLogTraceEvent.

This function cannot be called from 68K code.

This function should not be called at interrupt time.

InstLogTraceEventWithDataStructure

You can call InstLogTraceEventWithData to add a trace event record that includes user-

defined data to a trace instrumentation class.

pascal void InstLogTraceEventWithDataStructure(

InstTraceClassRef theTraceClass, InstEventTag eventTag,

InstEventOptions options, InstDataDescriptorRef descriptorRef,

const UInt8 *dataStructure, ByteCount structureSize);

theTraceClass

The trace instrumentation class that you wish to log an event against.

eventTag A tag that is used to link multi-part trace events.

options A value used to specify that that this is a multi-part event.

theDescriptor

A data descriptor that will be used to format the data into a string.

dataStructure

A pointer to a structure containing the argument list.

structureSize

The size of the structure pointed to by dataStructure.

DESCRIPTION

The InstLogTraceEventWithDataStructure function works similarly to the

InstLogTraceEvent function, described above, but includes user-defined data in the trace

event record.

Each member of the argument list structure should be 32-bit aligned.

SPECIAL CONSIDERATIONS

In the current implementation, InstLogTraceEventWithDataStructure is significantly

more expensive to call than InstLogTraceEvent.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 23

This function should not be called at interrupt time.

InstCreateEventTag

You can call InstCreateEventTag to generate a unique InstEventTag.

pascal InstEventTag InstCreateEventTag(void);

DESCRIPTION

The InstCreateEventTag function will return a different InstEventTag every time you

call it. Clients can call it from different processes or execution levels without getting
duplicate values.

Updating Statistics Classes

This section describes the routines that you use to update statistics classes.

InstUpdateGrowth

You can call InstUpdateGrowth to update the value of a growth statistics class.

pascal void InstUpdateGrowth(InstGrowthClassRef theGrowthClass,

UInt32 increment);

theGrowthClass

The growth statistics class that you wish to update.

increment The value that you wish to add to the current total.

DESCRIPTION

The InstUpdateGrowth function adds the increment to the current total maintained by the

growth class. It also sets the minimum increment and / or the maximum increment values as
necessary, and adds one to the update count.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 24

InstUpdateMagnitudeAbsolute

You can call InstUpdateMagnitudeAbsolute to set the current value of a magnitude

statistics class.

pascal void InstUpdateMagnitudeAbsolute(

InstMagnitudeClassRef theMagnitudeClass, SInt32 newValue);

theMagnitudeClass

The magnitude statistics class that you wish to update.

newValue The new magnitude value for the class.

DESCRIPTION

The InstUpdateMagnitudeAbsolute function sets the current value of the magnitude

class to the value supplied, and adds this value to the running total of all values set so far. It
also sets the minimum and / or the maximum values as necessary, and adds one to the
update count.

InstUpdateMagnitudeDelta

You can call InstUpdateMagnitudeDelta to set the current value of a magnitude statistics

class relative to the previous value.

pascal void InstUpdateMagnitudeDelta(

InstMagnitudeClassRef theMagnitudeClass, SInt32 delta);

theMagnitudeClass

The magnitude statistics class that you wish to update.

delta The amount to add to the current value to get the new value.

DESCRIPTION

The InstUpdateMagnitudeDelta function is equivalent to reading the current value of

theMagnitudeClass, adding delta to it, and calling the

InstUpdateMagnitudeAbsolute function with the result.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 25

InstUpdateHistogram

You can call InstUpdateHistogram to add a new value to a histogram or split histogram

class.

pascal void InstUpdateHistogram(

InstHistogramClassRef theHistogramClass,

SInt32 value, UInt32 count);

theHistogramClass

The histogram class you wish to update.

value A value that falls within the range of the histogram.

count The weight of the value in the histogram’s bucket.

DESCRIPTION

The InstUpdateHistogram function identifies which bucket in the histogram the value

falls into and adds count to the bucket’s “hit count.” If the value falls outside the range

specified in the histogram, count is added to the overflow count instead. The histogram’s

update count is incremented.

The InstUpdateHistogram function is used to update both histograms and split

histograms.

Normally, the value of count is 1.

InstUpdateTally

You can call InstUpdateTally to add a new value to a tally class.

pascal void InstUpdateTally(InstTallyClassRef theTallyClass,

void *bucketID, UInt32 count);

theTallyClass

The tally class you wish to update.

bucketID The bucket identifier you wish to add to.

count The value you wish to add to the bucket count.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 26

DESCRIPTION

The InstUpdateTally function first tries to find a bucket within its list that has been

registered to bucketID. If it finds one, it adds count to the bucket’s value. If not, and the

number of buckets is below its maximum, it creates a new one one for bucketID and sets

its value to count. If all the buckets have been created, it adds count to its overflow count

instead. The tally’s update count is incremented.

Normally, the value of count is 1.

Enabling and Disabling Instrumentation Classes

This section describes the routines that allow you to enable and disable instrumentation
classes.

InstEnableClass

You can call InstEnableClass to enable an instrumentation class.

pascal OSStatus InstEnableClass(InstClassRef classRef);

classRef The class you wish to enable.

DESCRIPTION

The InstEnableClass will enable the specified class. Enabling an enabled class has no

effect.

InstDisableClass

You can call InstDisableClass to disable an instrumentation class.

pascal OSStatus InstDisableClass(InstClassRef classRef);

classRef The class you wish to disable.

DESCRIPTION

The InstDisableClass will disable the specified class. Disabling a disabled class has no

effect.

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 27

Summary of the Instrumentation
System

Constants

#define kInstRootClassRef ((InstClassRef) -1)

enum { kInstDisableClassMask = 0x00,

kInstEnableClassMask = 0x01,

kInstSummaryTraceClassMask = 0x20

};

enum { kInstStartEvent = 1,

kInstEndEvent = 2,

kInstMiddleEvent = 3

};

enum { kInstNoEventTag = 0 };

Instrumentation Routines

Initialization and Termination
pascal OSStatus InstInitialize68K(void);

pascal OSStatus InstTerminate68K(void);

Creating and Destroying Instrumentation Classes
pascal OSStatus InstCreatePathClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstPathClassRef *returnPathClass);

pascal OSStatus InstCreateTraceClass(InstPathClassRef parentClass,

const char *className, OSType component, InstClassOptions options,

InstTraceClassRef *returnTraceClass);

pascal OSStatus InstCreateHistogramClass(InstPathClassRef parentClass,

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 28

const char *className, SInt32 lowerBounds, SInt32 upperBounds,

UInt32 bucketWidth, InstClassOptions options,

InstHistogramClassRef *returnHistogramClass);

pascal OSStatus InstCreateSplitHistogramClass(

InstPathClassRef parentClass, const char *className,

SInt32 histogram1LowerBounds, UInt32 histogram1BucketWidth,

SInt32 knee, SInt32 histogram2UpperBounds,

UInt32 histogram2BucketWidth, InstClassOptions options,

InstSplitHistogramClassRef *returnSplitHistogramClass);

pascal OSStatus InstCreateMagnitudeClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstMagnitudeClassRef *returnMagnitudeClass);

pascal OSStatus InstCreateGrowthClass(InstPathClassRef parentClass,

const char *className, InstClassOptions options,

InstGrowthClassRef *returnGrowthClass);

pascal OSStatus InstCreateTallyClass(InstPathClassRef parentClass,

const char *className, UInt16 maxNumberOfValues,

InstClassOptions options, InstTallyClassRef *returnTallyClass);

pascal void InstDisposeClass(InstClassRef theClass);

Creating and Destroying Data Descriptors
pascal OSStatus InstCreateDataDescriptor(const char *formatString,

InstDataDescriptorRef *returnDescriptor);

pascal OSStatus InstCreateDataDescriptors(const char **formatStrings,

UInt32 numberOfDescriptors,

InstDataDescriptorRef *returnDescriptorList);

pascal void InstDisposeDataDescriptor(

InstDataDescriptorRef theDescriptor);

pascal void InstDisposeDataDescriptors(

InstDataDescriptorRef *theDescriptorList,

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 29

UInt32 numberOfDescriptors);

Logging Trace Events
pascal void InstLogTraceEvent(InstTraceClassRef theTraceClass,

InstEventTag eventTag, InstEventOptions options);

pascal void InstLogTraceEventWithData(InstTraceClassRef theTraceClass,

InstEventTag eventTag, InstEventOptions options,

InstDataDescriptorRef theDescriptor, ...);

pascal void InstLogTraceEventWithDataStructure(

InstTraceClassRef theTraceClass, InstEventTag eventTag,

InstEventOptions options, InstDataDescriptorRef descriptorRef,

const UInt8 *dataStructure, ByteCount structureSize);

pascal InstEventTag InstCreateEventTag(void);

Updating Statistics Classes
pascal void InstUpdateGrowth(InstGrowthClassRef theGrowthClass,

UInt32 increment);

pascal void InstUpdateMagnitudeAbsolute(

InstMagnitudeClassRef theMagnitudeClass, SInt32 newValue);

pascal void InstUpdateMagnitudeDelta(

InstMagnitudeClassRef theMagnitudeClass, SInt32 delta);

pascal void InstUpdateHistogram(

InstHistogramClassRef theHistogramClass,

SInt32 value, UInt32 count);

pascal void InstUpdateTally(InstTallyClassRef theTallyClass,

void *bucketID, UInt32 count);

Enabling and Disabling Instrumentation Classes
pascal OSStatus InstEnableClass(InstClassRef classRef);

pascal OSStatus InstDisableClass(InstClassRef classRef);

Instrumentation Programmer’s Guide – 1.0.5 3/6/97 30

